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The AdS/CFT correspondence (cf. [1] for a review) has provided us with a powerful tool

to get insight into the strong coupling dynamics of certain field theories by studying classical

gravity. In the long wavelength limit, it is reasonable to expect that these interacting field

theories admit an effective description in terms of hydrodynamics. One can thus conversely

use the equations of fluid mechanics (which, in simple contexts, are much easier to solve

than the full set of Einstein’s equations) in order to make predictions for the gravity side.

This was done in [2], where the fluid configurations dual to (yet to be discovered) black

rings in (Scherk-Schwarz compactified) AdS were constructed.1

More recently, it was shown in [4] (cf. also [5] for the four-dimensional case) that the

equations of hydrodynamics (i. e., the Navier-Stokes equations) can also be derived directly

from Einstein’s equations with negative cosmological constant, without making any use of

string theory, from which these ideas originally emerged.

The correspondence between gravity in asymptotically AdS spaces and fluid mechanics

has interesting consequences: For instance, it is well known that under certain conditions

fluids are affected by the so-called Rayleigh-Plateau instability (responsible e. g. for the

pinch-off of thin water jets from kitchen taps), and one might ask what the gravity dual

of (the relativistic analogue of) this instability is. This point was studied recently in [6],

where it was argued that the gravity dual is the Gregory-Laflamme instability [7].

1For a discussion of plasma lumps dual to black saturns in AdS cf. [3].
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In this paper, we shall consider a more general setting in which the charged fluid moves

in external magnetic fields. The fluid is thus described by the equations of magnetohy-

drodynamics (MHD). Such a generalization is of interest for several reasons: First, there

are two possible fall-off conditions for a bulk U(1) gauge field: A normalizable mode that

corresponds to a VEV of the dual operator (an R-current), and a non-normalizable one

corresponding to the application of an external gauge field, that can be thought of as an

electromagnetic field. (2+1)-dimensional field theories deformed in this way, that are dual

to magnetically charged AdS4 black holes, have become fashionable recently in the context

of a possible holographic realization of condensed matter phenomena like superconductiv-

ity [8, 9], the Hall effect [10] and the Nernst effect [11]. In the long wavelength regime a

quantum field theory in presence of external gauge fields is expected to be described by

MHD. Second, solving the MHD equations (which, under certain symmetry assumptions,

might be much easier than solving the full set of Einstein-Maxwell equations) can be help-

ful for constructing new magnetically charged black hole solutions in AdS. Furthermore,

the phase structure of such AdS black holes can be studied in a simplified setting using

magnetohydrodynamics.

We should stress that the magnetic field entering the MHD equations is nondynamical,

so that there are no Maxwell equations on the boundary. Note however that, in the same

way in which one can promote the CFT metric to a dynamical field [12], it should be possible

to add dynamics also to the magnetic field, although we will not try to do this here.

The remainder of this paper is organized as follows: In section 1, we review general

aspects of MHD, like the equation of state and the stress tensor of the fluid under the

influence of external magnetic fields. Moreover, we show how the MHD equations emerge

from Einstein-Maxwell-AdS gravity. In the following section, we generalize the results

of [13] to the case of nonvanishing magnetic fields. We first consider static dyonic black holes

in AdS4. In an appropriate limit (when the horizon radius rh is much larger than the AdS

curvature radius ℓ), these black holes are effectively described by magnetohydrodynamics.

Conformal invariance and extensivity imply that the grandcanonical partition function has

to take the form
1

V
lnZgc = T 2h(ζ/T,B/T 2) , (0.1)

where ζ denotes a chemical potential conjugate to the U(1) electric charge of the fluid, B is

the applied magnetic field, and V and T represent the volume and the overall temperature

of the fluid respectively. We then show that, using the function h that can be read off from

the partition function of static black holes as an input into the MHD equations, we can

exactly reproduce the conserved charges, boundary stress tensor and R-currents associated

to the rotating dyonic Kerr-Newman-AdS solutions. Their thermodynamics is very simple:

It is summarized by the partition function

1

V
lnZgc =

T 2h(ζ/T,BΞ/T 2)

Ξ
, (0.2)

with Ξ = 1 − ω2ℓ2, and ω is the angular velocity of the black hole.
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After that, we solve the Navier-Stokes equations on R × S1 × S2, R × S1 × R
2 or

R × S1 × H2. This yields predictions for (yet to be constructed) charged rotating black

strings in AdS5 with momentum along the string.

In section 3 we consider perturbations around plasma tube solutions of the MHD

equations on R × R
2 × S1, that are dual to magnetic black strings on Scherk-Schwarz

compactified AdS6. These plasma tubes suffer from the long wavelength Rayleigh-Plateau

instability, which is shown to be weakened by the presence of a magnetic background. This

is exactly what one expects from the known studies of the Gregory-Laflamme instability

for magnetically charged black strings in asymptotically flat space, to which the considered

SS-compactified AdS black strings are similar.

Throughout this paper we use calligraphic letters T ,V,B,S, . . . to indicate local ther-

modynamic quantities, whereas T, V,B, S, . . . refer to the whole fluid configuration. µ and

ζ are local and global chemical potentials respectively.

Note added: while this paper was in preparation, ref. [14] appeared that partially over-

laps with our section 1.3.

1 Magnetohydrodynamics

1.1 Equation of state

We would like to know how the equation of state P = ρ/(d − 1) of a conformal fluid

in d dimensions changes in presence of a magnetic field B. To this end, consider the

grandcanonical potential

Φ = E − T S − µR = Φ(T ,V, µ,B) . (1.1)

It follows from conformal invariance and extensivity that

Φ = −VT dh(ν, b) , (1.2)

where we defined ν = µ/T and b = B/T 2. Note that µ and B have mass dimension one

and two respectively, so that ν and b are dimensionless. Equation (1.2) defines the function

h(ν, b). From (1.2) it is also clear that

Φ(λT , λ1−dV, λµ, λ2B) = λΦ(T ,V, µ,B) . (1.3)

If we derive this with respect to λ, set λ = 1 and use

∂Φ

∂T = −S ,
∂Φ

∂V = −P ,
∂Φ

∂µ
= −R ,

∂Φ

∂B = −VM , (1.4)

where M is the magnetization density, we obtain

− ST − (1 − d)PV −Rµ − 2VMB = Φ . (1.5)

Using the definition (1.1) of Φ, this yields the equation of state

ρ = (d − 1)P − 2BM . (1.6)

We will see below that large dyonic black holes in AdS4 indeed have a grandcanonical

potential of the form (1.2), with d = 3.

– 3 –
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1.2 Stress tensor of the fluid

We want to determine now the general form of the stress tensor for our fluid, and we will

do this in a derivative expansion in the fluid velocity uµ, following [15]. The zero order

term corresponds to a perfect fluid (under the influence of external electromagnetic fields

F I
µν , labelled by the index I), with stress tensor, charge currents and entropy current given

respectively by (cf. e. g. [11])

T µν = ρuµuν + PΠµν −Mµλ
I F Iν

λ , Jµ
I + ∇σMσµ

I = rIu
µ , Jµ

S = suµ , (1.7)

where we have introduced the projection tensor

Πµν = gµν + uµuν (1.8)

on the directions orthogonal to uµ. ρ = ρ(T , µI ,BJ) is the rest frame energy density,

rI = rI(T , µJ ,BK) and s = s(T , µI ,BJ) are the rest frame charge- and entropy densities,

while µI and BJ denote the chemical potentials and magnetic fields respectively. The

polarization tensor Mµλ
I is defined by

Mµλ
I = − 1

V
∂Φ

∂F I
µλ

. (1.9)

Note that the microscopic currents (polarization currents) are given by

Jµ
I micr. = −∇σMσµ

I , (1.10)

whereas Jµ
I represents the total current density, so that the combination Jµ

I + ∇σMσµ
I

appearing in (1.7) is the macroscopic or transport current. Notice also that the extra

contribution −Mµλ
I F Iν

λ to the stress tensor in (1.7) comes from the coupling of the po-

larization to the electromagnetic field.

The first subleading order in the derivative expansion of the MHD equations describes

dissipative phenomena like viscosity and diffusion. Lorentz invariance and the requirement

that the entropy is non-decreasing determine the form of the stress tensor and the currents.

Let us introduce diffusion currents qµ
I ,

Jµ
I + ∇σMσµ

I = rIu
µ + qµ

I , (1.11)

with the constraint uµqµ
I = 0, meaning that the diffusive process is purely spatial according

to an observer comoving with the fluid element. Next we introduce the heat flux qµ and

the viscous stress tensor, decomposed in a symmetric traceless part τµν and a trace τ ,

such that

T µν = (P + τ)Πµν + ρuµuν −Mµλ
I F Iν

λ + qµuν + qνuµ + τµν . (1.12)

Again these quantities are purely spatial, and verify the constraints

uµqµ = 0, uµτµν = 0 . (1.13)
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Note that the new fields qµ
I , qµ, τ and τµν are first order in ∇u. Finally the entropy flux is a

linear combination of all the available vectors that are at most first order in ∇u. Therefore

Jµ
S = suµ + βqµ − λIqµ

I , (1.14)

where the scalars β and λI are functions of the thermodynamic parameters.

To determine the most general form allowed for the newly introduced quantities we

impose the second law of thermodynamics. To have a non-decreasing total entropy the

four-divergence of the entropy flux must be positive,

∇µJµ
S ≥ 0 . (1.15)

Projecting the MHD equations on uµ we obtain

uµ∇νT
µν = uµJν

I F I
µν , (1.16)

which can be cast, with some straightforward manipulations, in the form2

(ρ + P)ϑ = −τϑ − uµ∇µρ + uµuν∇νq
µ −∇µqµ + uµ∇ντ

µν

−1

2
uµMνλ

I ∇µF I
νλ − uµF I

µν(Jν
I + ∇σMσν

I ) , (1.17)

with the expansion ϑ = ∇µuµ.

We have the Euler relation

ρ + P = sT + µIrI , (1.18)

which implies the Gibbs-Duhem relation

dP = s dT + rI dµI + MIdBI , (1.19)

with the magnetization densities MI . This yields

s∇µT = ∇µP − rI∇µµI −MI∇µBI . (1.20)

The entropy density is a function of ρ, rI and BJ , so that its gradient reads

∇µs =

(

∂s

∂ρ

)

rI ,BJ

∇µρ +

(

∂s

∂rI

)

ρ,BJ

∇µrI +

(

∂s

∂BJ

)

rI ,ρ

∇µBJ

=
1

T ∇µρ − µI

T ∇µrI +
MJ

T ∇µBJ . (1.21)

Then

∇µJµ
S =

1

T uµ∇µρ − µI

T uµ∇µrI +
MJ

T uµ∇µBJ +

(P + ρ − µIrI

T

)

ϑ

+β∇µqµ + qµ∇µβ − λI∇µqµ
I − qµ

I ∇µλI . (1.22)

2To get this, one has to use Mµλ
I = χIJF Jµλ, with the susceptibilities χIJ = χJI , as well as the Bianchi

identities for F I .

– 5 –
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The conservation of the charge currents ∇µJµ
I = 0 yields the relation3

uµ∇µrI = −∇µqµ
I − rIϑ , (1.23)

that, together with (1.17), can be used to put the divergence of the entropy flux in the form

∇µJµ
S = qµ

(

∇µβ − 1

T uν∇νuµ

)

+

(

β − 1

T

)

∇µqµ −
(

λI − µI

T

)

∇µqµ
I

−qµ
I

(

∇µλI − 1

T F I
µνuν

)

− τ

T ϑ − 1

T τµν∇νuµ . (1.24)

Note that, in order to get (1.24), we assumed that the grandcanonical potential Φ depends

on F I only through the invariant F I
µνF Iµν (no summation over I), and we defined (BI)2

to be given (up to a prefactor) by F I
µνF Iµν . This leads to

− 1

2
Mνλ

I ∇µF I
νλ = −MI∇µBI . (1.25)

We ensure that the right hand side of (1.24) is positive or vanishing by requiring that each

term be positive or vanishing. This can be easily achieved by choosing

β =
1

T , λI =
µI

T . (1.26)

Then, the diffusion currents are given by

qµ
I = −DIJΠµν

[

∇ν

(

µJ

T

)

− 1

T F J
νσuσ

]

, (1.27)

where we have introduced the projector Πµν to ensure that the diffusion currents be space-

like, and the diffusion matrix DIJ is positive definite. Moreover, we set

τ = −ζ∇µuµ , (1.28)

where ζ ≥ 0 is the bulk viscosity, and the heat flux is given by

qµ = −κT Πµν

(

1

T ∇νT + uσ∇σuν

)

, (1.29)

with κ ≥ 0 the thermal conductivity of the fluid. Finally,

τµν = −ησµν , (1.30)

with η ≥ 0 the shear viscosity of the fluid and σµν the shear tensor,

σµν =
1

2
(Πσν∇σuµ + Πσµ∇σuν) − 1

3
Πµνϑ . (1.31)

With these definitions, we find

∇µJµ
S =

qµqµ

κT 2
+

ζ

T ϑ2 +
(

D−1
)

IJ qµ
I qJµ +

τµντµν

ηT ≥ 0 , (1.32)

which is positive by construction. Notice finally that the stress tensor in (1.7) is traceless

on account of the equation of state (1.6).

3Note that the polarization current is separately conserved, ∇µ∇σM
σµ = 0.
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1.3 MHD equations from gravity

In this section, we consider Einstein-Maxwell-AdS gravity in D dimensions and show that at

leading order the boundary theory dual to a charged D-dimensional AdS black hole reduces

to magnetohydrodynamics in d = D−1 dimensions in the long wavelength sector. We follow

the usual procedure to foliate asymptotically the spacetime with timelike hypersurfaces Σr

and regularize the action by adding appropriate boundary counterterms. Then, in the

r → ∞ limit, the Brown-York stress tensor has a finite limit, the renormalized holographic

stress tensor of the dual CFT. The projection of the Einstein-Maxwell equations on Σr then

shows that this stress tensor together with the boundary gauge fields satisfy the equations of

magnetohydrodynamics on the boundary. We can interpret this as the leading contribution

in the derivative expansion to the boundary MHD equations describing the long wavelength

sector of gravity.

The Einstein-Maxwell action with negative cosmological constant Λ = −(D − 2)(D −
1)/2ℓ2 reads

I =
1

16πG

∫

dDx
√−g

(

R − 2Λ −FMNFMN
)

+ ICS +
1

8πG

∫

ΣR

ddx
√
−h K + Ict , (1.33)

where ICS is the Chern-Simons term, present in the D = 5 case. M,N, . . . are bulk

indices, whereas µ, ν, . . . refer to the boundary. In this subsection (and only here), we refer

to the bulk gauge field as FMN to distinguish it from the boundary gauge field. In all

other sections of the paper we do not need such a distinction. ΣR denotes the boundary

hypersurface r = R with outward pointing unit normal nM , and induced metric

hMN = gMN − nMnN . (1.34)

K is the trace of the extrinsic curvature defined by (with DM the bulk covariant derivative)

KMN = hM
PDP nN . (1.35)

Finally, Ict are the usual boundary counterterms needed to obtain a finite action in the

limit R → ∞. We shall not need the precise form of Ict, but only the fact that their

variation with respect to the metric is divergence-free,

∇̂µ δIct

δhµν
= 0 . (1.36)

Here we have defined ∇̂µ as the induced covariant derivative on ΣR. Also, notice that

additional terms can be added to Ict to handle the logarithmic divergences appearing for

odd D, corresponding to the Weyl anomaly of the dual CFT. We can use the Fefferman-

Graham expansion to write the metric of any asymptotically AdS spacetime near spatial

infinity in the form

ds2 =
ℓ2

r2
dr2 + r2gµν(r, x)dxµdxν , (1.37)

where

gµν = g(0)
µν +

1

r2
g(2)
µν + · · · + 1

rd
g(d)
µν + h(d)

µν

ln r

rd
+ O

(

1

rd+1

)

. (1.38)

– 7 –
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The coefficients g
(a)
µν and h

(d)
µν depend only on the boundary coordinates xµ and the co-

efficient h
(d)
µν , related to the holographic Weyl anomaly, is present for odd D only. The

normal vector to the constant r hypersurfaces is nA∂A = r/ℓ ∂r and the induced metric is

hµν = r2gµν

∣

∣

r=R
. Then, the conformal boundary metric of AdSD is obtained by taking

the limit

γµν = lim
R→∞

ℓ2

R2
hµν . (1.39)

Let us decompose the gauge field in the orthogonal component ĴM and its projection F̂MN

on ΣR,

FMN = F̂MN +
1

2
(ĴMnN − ĴNnM ) , (1.40)

where

ĴM = 2hMNnPFNP , F̂MN = hM
P hN

QFPQ . (1.41)

The analysis of the asymptotic behavior of vector gauge fields [16, 17] shows that F̂µν

has a finite R → ∞ limit, while the current ĴM goes to zero like r−d. Therefore, the

renormalized background gauge field in the dual field theory, and the R-symmetry current

read respectively

Fµν = lim
R→∞

F̂µν , Jµ = lim
R→∞

√
−h√−γ

Ĵµ . (1.42)

Now, by varying I with respect to the bulk metric and gauge field, we obtain the

equations of motion4

EMN = GMN + ΛgMN − TMN = 0 , DMFMN = 0 , (1.43)

where the stress tensor of the gauge field is given by

TMN = 2FM
PFPN − 1

2
F2gMN . (1.44)

Then, from the projection

EMNnMhN
P = 0 (1.45)

of the Einstein equations, we obtain, using Gauss-Codazzi

∇̂M

(

KM
N − δM

NK
)

= F̂NM ĴM . (1.46)

We recognize in the term in parenthesis the Brown-York boundary stress tensor, which

diverges as we take the R → ∞ limit, but will give a finite limit — the holographic stress

tensor T µν — once we take into account the counterterm contribution [18],

√−γ γµνTνρ = lim
R→∞

√
−hhµν

(

Kνρ − hνρK +
δIct

δhνρ

)

, (1.47)

4In D = 5 one has to take into account that there is a Chern-Simons term and the Maxwell equations

read d⋆F + 2
√

3
F ∧ F = 0.

– 8 –
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Since the counterterm contribution is divergence-free by (1.36), we can add its divergence

to the left hand side of (1.46) and, after multiplying the equation by
√
−h, obtain a finite

R → ∞ limit that reads

∇µT µ
ν = FνµJµ , (1.48)

where ∇µ is the covariant derivative induced on the conformal boundary with metric γµν .

On the other hand, using the definition (1.41) it follows that ∇̂µĴµ = 0, that becomes, in

the R → ∞ limit, the conservation law for the R-current,

∇µJµ = 0 . (1.49)

Note that equations (1.48) and (1.49) are simply the Ward identities associated to the bulk

diffeomorphism and gauge invariance respectively [19].

These conservation equations for the boundary stress-energy tensor and R-current

become the equations for magnetohydrodynamics in the background field Fµν when a large

black hole is present in the bulk. Indeed, as noted in [20], stationary Kerr-AdS black

holes have a holographic stress tensor that assumes the perfect fluid form. We will show

in the next section that this is still the case for dyonic Kerr-Newman-AdS4 black holes,

and we believe it to be true in any dimension. This dual stress tensor, of the perfect

fluid form, yields, when combined with equations (1.48) and (1.49), the equations of MHD.

Then, if one perturbs these stationary solutions with long wavelength disturbances, in

the spirit of [4], the horizon can still be decomposed into patches that tubewise extend

to the boundary which are approximated by boosted pieces of black branes. Therefore,

to leading order in the derivative expansion, large magnetically charged black holes are

dual to a magnetohydrodynamic theory. We shall check this explicitely in the next section

for dyonic AdS4 black holes. Higher orders in the perturbation theory produce higher-

derivative dissipative terms in the stress tensor. A detailed analysis of this long wavelength

sector of gravity, with a complete proof of the duality with MHD and the computation of

the dual stress tensor up to third order in the derivative expansion has been performed by

Hansen and Kraus in the AdS4 case and appeared during the last stages of preparation of

this manuscript [14].

2 AdS black holes and black strings from MHD

2.1 Static dyonic black holes in AdS4

The equations of motion following from the Einstein-Maxwell action with negative cosmo-

logical constant Λ = −3ℓ−2,

I =
1

16πG

∫

d4x
√−g

[

R − FMNFMN − 2Λ
]

, (2.1)

admit the static dyonic black hole solutions

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2(dθ2 + S(θ)2dφ2) , (2.2)
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where

V (r) =
r2

ℓ2
+ k − 2m

r
+

q2
e + q2

m

r2
, (2.3)

and

S(θ) =











sin θ , k = 1 ,

1 , k = 0 ,

sinh θ , k = −1 .

(2.4)

The horizon is thus S2 (k = 1), R
2 (k = 0) or H2 (k = −1). m, qe and qm denote the mass

parameter, electric and magnetic charge respectively. The one-form gauge potential reads

At = −qe

r
, Aφ = qm

∫

S(θ)dθ . (2.5)

The strength of the magnetic field B in the dual CFT can be obtained (up to rescaling

by powers of ℓ) by taking r → ∞ in the expression for the bulk field strength. This leads

to B = qm/ℓ3. The electric charge density ρe of the state in the field theory is given by

ρe = 〈J t〉, where Jµ is the R-current that can be computed as follows. On-shell we have

for the variation of the action with respect to the gauge potential

δI

δAN
δAN = − 1

4πG

∫

d4x∂M (
√−gFMNδAN ) = − 1

4πG

∫

d3x
√
−hnMFMNδAN , (2.6)

where h denotes the induced metric on the boundary, and n is the outward pointing unit

normal to the boundary. One has thus in the limit of large r

δI

δAt
=

1

4πG

ℓqe

r3
. (2.7)

To get the CFT R-current, one has to rescale this by r3/ℓ2, so that

〈J t〉 =

√
2N3/2qe

6πℓ3
, (2.8)

where we used the AdS/CFT dictionary

1

16πG
=

√
2N3/2

24πℓ2
. (2.9)

Note that the result (2.8) was obtained for k = 0 in [10]. In order for the potential

to be regular at the horizon r = rh, At must vanish there. This requires that we add

the pure gauge term (qe/rhℓ)dt to A/ℓ. This term is non-normalizable and has the dual

interpretation of adding a chemical potential for the electric charge, ζ = qe/rhℓ, to the field

theory [10]. The R-charge is R = ρeV , with the spatial volume5

V = ℓ2

∫

dθdφS(θ) . (2.10)

5In order to get a finite volume in the cases k = 0 and k = −1, one has to compactify the horizon to a

torus or a higher genus Riemann surface respectively.
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This yields

R =

√
2N3/2qeV

6πℓ3
. (2.11)

The entropy S and energy E of the black hole read

S =
Ah

4G
=

√
2N3/2r2

hV

6ℓ4
, (2.12)

E =
m

4πG

V

ℓ2
=

√
2N3/2V

12πℓ4

[

r3
h

ℓ2
+ krh +

q2
e + q2

m

rh

]

. (2.13)

In what follows, we shall be interested in a magnetohydrodynamical description of the

above black holes. Like in [13], we may estimate the mean free path for the fluid as

lmfp ∼ η/ρ, where η is the shear viscosity and ρ is the energy density of the fluid. For fluids

described by a gravitational dual, one has η = s/4π, where s is the entropy density [21].

Consequently, lmfp ∼ s/4πρ, and an MHD description will be valid if this value is much

smaller than the radius of the S2 or the H2 curvature radius,6 s/4πρ ≪ ℓ. Using the

expressions for S and E, this implies

rh

ℓ
+ k

ℓ

rh
+

(q2
e + q2

m)ℓ

r3
h

≫ 1 . (2.14)

A sufficient condition for (2.14) to hold is rh/ℓ ≫ 1, i. e. , for large black holes. In this

case we can neglect the k-contribution to the energy, and the thermodynamic fundamental

relation becomes

E(S, V,R,B) =

√
2N3/2V

12π

(

6S√
2N3/2V

)3/2
[

1 +

(

πR

S

)2

+
B2N3V 2

18S2

]

. (2.15)

One easily checks that
∂E

∂S
= T ,

∂E

∂R
= ζ , (2.16)

where

T =
V ′(rh)

4π
=

1

4π

[

3rh

ℓ2
− q2

e + q2
m

r3
h

]

(2.17)

is the Hawking temperature of the black hole. From (2.15), we get the grandcanonical

potential

Φ(T, V, ζ,B) = E − TS − ζR = −V T 3h(ζ/T,B/T 2) , (2.18)

with the function h given by

h =

√
2N3/2

24π

[

H3 + H

(

ζ

T

)2

− 3

H

(

B

T 2

)2
]

, (2.19)

where H(ζ/T,B/T 2) = rh/(ℓ2T ) is determined by the fourth order equation

3H4 − 4πH3 − (ζ/T )2H2 − (B/T 2)2 = 0 , (2.20)

6In the (compactified) k = 0 case, lmfp must be much smaller than the length of any torus cycle.
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that follows from (2.17). Note that Φ has indeed the form (1.2), as it must be.

We now want to obtain the dyonic AdS4 black holes from MHD on R×S2, R×R
2 or

R × H2. The metric on the conformal boundary is given by

ds2 = −dt2 + ℓ2(dθ2 + S(θ)2dφ2) , (2.21)

so that the only nonzero Christoffel symbols are

Γθ
φφ = −S(θ)S′(θ) , Γφ

θφ = Γφ
φθ =

S′(θ)

S(θ)
. (2.22)

For stationary, translationally invariant and axisymmetric configurations one has ∂tT
µν =

∂φT µν = 0 (we also assume ∂tF
µν = ∂φFµν = 0), and the MHD equations ∇µT µν = F ν

µJµ

become thus

∂θT
θt +

S′

S
T θt = F t

µJµ , (2.23)

∂θT
θθ +

S′

S
T θθ − SS′T φφ = F θ

µJµ , (2.24)

∂θT
θφ +

3S′

S
T θφ = Fφ

µJµ . (2.25)

The macroscopic electric charge current and the entropy current are given respectively by

Jµ
macr. = Jµ + ∇σMσµ = ruµ , Jµ

S = suµ , (2.26)

where uµ = γ(1, ~v) is the 3-velocity of the fluid, r denotes the electric charge density and

s is the rest frame entropy density. Both currents are conserved,

∇µJµ
macr. = ∇µJµ

S = 0 . (2.27)

As there are no dissipative terms in the charge- and entropy currents, we have for the

entropy

S =

∫

d2x
√−gJ t

S =

∫

dθdφ ℓ2S(θ)sγ , (2.28)

and for the electric charge

R =

∫

d2x
√−gJ t

macr. =

∫

dθdφ ℓ2S(θ)rγ . (2.29)

The Killing vectors of interest are ∂t (energy E) and ∂φ (angular momentum J on the

S2, R
2 or H2). The conserved charge related to a Killing vector k is proportional to

∫

d2x
√−g T t

µkµ, and hence

E =

∫

dθdφ ℓ2S(θ)T tt , (2.30)

J =

∫

dθdφ ℓ4S3(θ)T tφ . (2.31)

The shear tensor σµν , heat flux qµ and diffusion current qµ
D must vanish on any stationary

solution of fluid dynamics. The requirement σµν = 0 means that the fluid motion should
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be just a rigid rotation. By an SO(3) transformation7 we can can choose this rotation such

that the 3-velocity of the fluid is uµ = (ut, uθ, uφ) = γ(1, 0, ω) for some constant ω. From

uµuµ = −1 and γ = (1 − v2)−1/2 one obtains then v2 = ω2ℓ2S2(θ).

The equilibrium fluid flow is symmetric under translations of t and φ, so that all

thermodynamic quantities depend only on θ. We now evaluate the expansion, acceleration,

shear tensor, heat flux (1.29) and diffusion current (1.27), with the result

ϑ = 0 , aµ = (0,−S(θ)S′(θ)γ2ω2, 0) , σµν = 0 , (2.32)

qµ = −κℓ−2γ

(

0,
d

dθ

(T
γ

)

, 0

)

, (2.33)

qµ
D = −Dℓ−2

(

− 1

T Ftφγω,
d

dθ

( µ

T
)

− 1

T Fθσuσ,
1

T Ftφγ

)

, (2.34)

where κ and D denote the thermal conductivity and the diffusion coefficient respectively,

T is the local temperature and µ the local chemical potential. The requirement that qµ

and qµ
D vanish implies that

T = τγ , Ftφ = 0 ,
d

dθ

(

µ

γ

)

− 1

γ
Fθσuσ = 0 , (2.35)

with τ constant. If Fθσuσ = 0, the last equ. is solved by µ = T ν, where ν is constant. The

conditions (2.35) determine all the thermodynamic quantities as a function of the coordi-

nate θ. We now want to shew that this configuration solves the equations of magnetohydro-

dynamics. To this end, we first notice that the dissipative part of the energy-momentum

tensor vanishes once (2.35) is imposed, so that all nonzero contributions to the stress tensor

result from the perfect fluid part plus interaction with the external electromagnetic field,

and read

T µν = γ2







ρ + v2P 0 (ρ + P)ω

0 γ−2ℓ−2P 0

(ρ + P)ω 0 ρω2 + Pℓ−2S−2(θ)






+ T µν

int. , (2.36)

where P denotes the local pressure and T µν
int. is given by

T µν
int. = −MµλF ν

λ =







MtθFtθ 0 −MθφFtθ

0 −ℓ−2(MtθFtθ + MθφFθφ) 0

−MθφFtθ 0 −ℓ−2S−2(θ)MθφFθφ






.(2.37)

Eqs. (2.23) and (2.25) imply F t
µJµ = Fφ

µJµ = 0, which are automatically satisfied if the

susceptibility χ does not depend on t and φ, which we assume in the following. The only

nontrivial equation of motion (2.24) becomes

dP
dθ

− (P + ρ)
d ln γ

dθ
− 1

2
Mνλ∇θFνλ = rFθµuµ . (2.38)

7Strictly speaking, an applied electromagnetic field breaks SO(3) invariance, so that our choice of uµ

implies consistency conditions on Fµν (cf. (2.35) below).
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Using the Gibbs-Duhem relation (1.19) as well as (1.25), equ. (2.38) can be cast into

the form

γs
d

dθ

(T
γ

)

+ rγ
d

dθ

(

µ

γ

)

= rFθµuµ , (2.39)

which is automatically solved using (2.35). Therefore, the rigidly rotating configurations

are stationary solutions of the magnetohydrodynamic equations. Moreover, as the diffusion

current and the heat flux vanish, the only nonzero contributions to the transport R-charge-

and entropy currents come from the perfect fluid pieces (2.26), which are easily seen to be

conserved as well.

From the grandcanonical potential (1.2) we find

P = T 3h(ν, b) , M = T ∂h

∂b
, s = T 2

(

3h − ν
∂h

∂ν
− 2b

∂h

∂b

)

,

ρ = 2(P −MB) = 2T 3

(

h − b
∂h

∂b

)

, r = T 2 ∂h

∂ν
. (2.40)

In the nonrotating case ω = 0, we have γ = 1, Fθσuσ = Fθφuφ = Fθφγω = 0, B =

B = const., and thus (2.35) implies that the local temperature T as well as ν and b are

constant. We can then easily compute the energy, entropy, R-charge and magnetization,

with the result

E = 2τ3V

(

h − b
∂h

∂b

)

, R = τ2V
∂h

∂ν
,

S = τ2V

(

3h − ν
∂h

∂ν
− 2b

∂h

∂b

)

, M = τV
∂h

∂b
. (2.41)

It is straightforward to verify8 that the Hawking temperature of the black hole is given by

T = τ , and the chemical potential associated to the R-charge is ζ = τν. Using the relations

∂h

∂ν
=

√
2N3/2

6π
Hν ,

∂h

∂b
= −

√
2N3/2

6π

b

H
, (2.42)

following from (2.19), (2.20), one easily shows that E, S and R coincide with the corre-

sponding expressions (2.15), (2.12) and (2.11) for the static black hole.

In the next subsection we will show that, using the function h determined from the

static AdS4 black hole as an input into the MHD equations, one can exactly reproduce

the thermodynamics, boundary stress tensor and R-current of the rotating dyonic Kerr-

Newman-AdS4 solution.

2.2 Kerr-Newman-AdS4

The Kerr-Newman-AdS4 solution to the equations of motion following from (2.1) is

8One can express dE − τdS − τνdR + MdB in terms of dτ , dν, db and check that it vanishes.
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given by9

ds2 = −∆r

ρ2

[

dt − a sin2 θ

Ξ
dφ

]2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ sin2 θ

ρ2

[

adt − r2 + a2

Ξ
dφ

]2

, (2.43)

A = −qer

ρ2

[

dt − a sin2 θ

Ξ
dφ

]

+
qm cos θ

ρ2

[

adt − r2 + a2

Ξ
dφ

]

, (2.44)

where

∆r = (r2 + a2)

(

1 +
r2

ℓ2

)

− 2mr + q2
e + q2

m , Ξ = 1 − a2

ℓ2
, (2.45)

ρ2 = r2 + a2 cos2 θ , ∆θ = 1 − a2

ℓ2
cos2 θ , (2.46)

and a is a rotation parameter.

The thermodynamical phase structure and stability of these black holes was studied

in detail in [22]. In order to get the boundary geometry dσ2, one takes r = const. → ∞,

and then rescales ds2 by ℓ2/r2. This leads to

dσ2 = −
[

dt − a sin2 θ

Ξ
dφ

]2

+
ℓ2

∆θ
dθ2 +

ℓ2∆θ sin2 θ

Ξ2
dφ2 , (2.47)

which is a rotating Einstein universe. In the limit of large r, the U(1) field strength

behaves as

F → qm

Ξ
sin θ dθ ∧ dφ . (2.48)

As before, the expectation value of the CFT R-current Jµ can be computed by varying

the action on-shell with respect to the gauge potential Aµ and subsequently rescaling by

r3/ℓ2. This yields

Jt = −
√

2N3/2qe

6πℓ3
, Jφ =

√
2N3/2qea sin2 θ

6πℓ3Ξ
, Jθ = 0 . (2.49)

The chemical potential ζ of the dual field theory is given by [22]

ζℓ = Ae
νχ

ν |r→∞ − Ae
νχ

ν |r=rh
=

qerh

r2
h + a2

, (2.50)

where χ = ∂t + ΩH∂φ denotes the null generator of the horizon and Ae
ν is the electric part

of the vector potential. The angular velocity of the horizon reads

ΩH =
aΞ

r2
h + a2

. (2.51)

In what follows, we shall be interested in the limit of large black holes, rh ≫ ℓ, when a

hydrodynamical description is valid. As a2 < ℓ2 (otherwise ∆θ can become negative), we

have then also r2
h ≫ a2, and the chemical potential (2.50) reduces to

ζ =
qe

ℓrh
. (2.52)

9For the time being, we restrict to the case of spherical horizons. The generalization to k = 0,−1 is

straightforward.
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The electric charge of the black hole (the field theory R-charge) is obtained by computing

the flux of the electromagnetic field strength at infinity, with the result10

R =
ℓqe

ΞG
. (2.53)

The temperature, Bekenstein-Hawking entropy, energy and angular momentum are

given by [22]

T =
rh

4π(r2
h + a2)

(

1 +
a2

ℓ2
+

3r2
h

ℓ2
− a2 + q2

e + q2
m

r2
h

)

≈ 1

4πrh

(

3r2
h

ℓ2
− q2

e + q2
m

r2
h

)

, (2.54)

S =
π(r2

h + a2)

ΞG
≈ 2π

√
2N3/2r2

h

3ℓ2Ξ
, (2.55)

E =
m

Ξ2G
≈

√
2N3/2

3ℓ2Ξ2

[

r3
h

ℓ2
+

q2
e + q2

m

rh

]

, (2.56)

J = aE , (2.57)

where in the last steps we took the large black hole limit. Let us write the metric (2.43)

in the ADM form

ds2 = −N2dt2 +
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

Σ2 sin2 θ

ρ2Ξ2
(dφ − Ωdt)2 , (2.58)

where

Σ2 = (r2 + a2)2∆θ − a2∆r sin2 θ , (2.59)

and the lapse function N and the angular velocity Ω are defined by

N2 =
ρ2∆r∆θ

Σ2
,

Ω =
aΞ

Σ2

[

∆θ(r
2 + a2) − ∆r

]

. (2.60)

It was shown in [22] that the angular velocity ω entering the thermodynamics is

ω = ΩH − Ω∞ =
a(1 + r2

h/ℓ2)

r2
h + a2

, (2.61)

which boils down to

ω ≈ a/ℓ2 (2.62)

for large black holes.

By applying the implicit coordinate transformation [23]11

T = t , Φ = φ +
a

ℓ2
t , y cos Θ = r cos θ , y2 =

1

Ξ
[r2∆θ + a2 sin2 θ] (2.63)

10Note that we rescaled R by a factor of ℓ and ζ by ℓ−1 with respect to [22].
11We apologize for using the same symbol Φ for an angular coordinate and the grandcanonical potential,

but the meaning should be clear from the context.
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to the solution (2.43), one gets a different slicing such that the boundary geometry is that

of a static Einstein universe,

dσ̃2 = −dT 2 + ℓ2(dΘ2 + sin2 ΘdΦ2) . (2.64)

Note that (2.64) is related to (2.47) by a diffeomorphism plus a Weyl rescaling: On the

boundary r → ∞ (which implies y → ∞), the coordinate transformation (2.63) reduces to

T = t , Φ = φ +
a

ℓ2
t , sin Θ =

sin θ√
∆θ

. (2.65)

Applying this to (2.64) and subsequently rescaling with e2ϕ = ∆θ/Ξ yields (2.47). The two

boundary metrics are thus conformally related. For the five-dimensional Kerr-AdS black

hole, this was first noticed in [24].

In the new coordinates, the Faraday tensor on the boundary becomes

F → qm

(

1 − a2

ℓ2
sin2 Θ

)−3/2

sinΘ dΘ ∧
(

dΦ − a

ℓ2
dT

)

. (2.66)

Due to the nonvanishing component FΘT , we have now also an external electric field. This

is not surprising; it results from the boost in (2.65).

In order to proceed, we need the thermodynamic variable B. We already stated in

section 1.2 that B2 is proportional to FµνFµν . To fix the prefactor, note that for the field

strength (2.66), one gets

FµνFµν =
2q2

m

ℓ4

(

1 − a2

ℓ2
sin2 Θ

)−2

, (2.67)

which reduces to F 2 = 2q2
m/ℓ4 = 2ℓ2B2 in the static case a = 0. We have thus12

B =

√
F 2

√
2ℓ

. (2.68)

The grandcanonical potential Φ(T ,V, µ,B) is given by (2.18), with h(ν, b) defined

in (2.19), (2.20), and

b =
B
T 2

=

√
F 2

√
2ℓT 2

. (2.69)

One can then compute the polarization tensor Mµν , with the result

Mµν = − 1

V
∂Φ

∂Fµν
= χFµν , (2.70)

with the susceptibility

χ =
1

ℓ2bT
∂h

∂b
= −

√
2N3/2

6πHℓ2T . (2.71)

12Up to the prefactor ℓ, that stems from the fact that the boundary Faraday tensor is obtained from the

corresponding bulk quantity by projecting on the boundary and then rescaling with ℓ−1, in flat spacetime

this would just be the statement that F 2 = 2(B2 − E2), and we defined B2 to be what is usually called

B2 − E2.
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Note that χ is always negative, so that our fluid is diamagnetic. Moreover, for large (local)

temperatures T (keeping µ and B finite), (2.20) gives H(µ/T ,B/T 2) → 4π/3, and thus

χ → −C

T , C ≡
√

2N3/2

8π2ℓ2
, (2.72)

i. e., the susceptibility obeys a diamagnetic Curie law with Curie constant C.

Let us now consider the MHD equations ∇µT µν = F ν
µJµ with the field strength (2.66).

One easily shows that F ν
µuµ = 0 for ν = T,Φ, and that FΘ

µuµ is proportional to ω−a/ℓ2.

Let us assume that this vanishes, i. e. , that the angular velocity of the fluid is given by

ω = a/ℓ2, as is suggested by (2.62). Then the transport current ruµ is orthogonal to the

electromagnetic field, and (2.35) implies that ν = µ/T is constant. Moreover, from (2.69)

and (2.67) we have

b =
qm

ℓ3T 2

(

1 − a2

ℓ2
sin2 Θ

)−1

=
qmγ2

ℓ3T 2
for ω =

a

ℓ2
, (2.73)

which is constant by virtue of (2.35). Using this, it is straightforward to shew that the

polarization current Jµ
micr. = −∇σMσµ is proportional to uµ in this case, and hence or-

thogonal to F ν
µ as well. This means that F ν

µJµ = 0; due to orthogonal magnetic and

electric fields compensating each other, there is no net Lorentz force acting on the fluid,

and the MHD equations boil down to ∇µT µν = 0. It is interesting to consider this situation

from the point of view of a reference frame which is moving with the charged fluid (the

rotating Einstein universe (2.47)). In this reference frame the fluid is static and therefore

not subject to the magnetic force. Since the net electromagnetic force, which in this frame

consists only of the electric force, must be zero, the electric field must vanish in the moving

reference frame. This is indeed the case, as can be seen from (2.48).

It would be very interesting to see to which kind of black holes the fluid configurations

with ω different from a/ℓ2 correspond to. They might have to do with a nontrivial nut

parameter, but we shall leave this point for future investigations.

One can now proceed to compute the conserved charges. From (2.28)–(2.31)

one obtains

S =
4πℓ2τ2

Ξ

(

3h − ν
∂h

∂ν
− 2b

∂h

∂b

)

, R =
4πℓ2τ2

Ξ

∂h

∂ν
, (2.74)

E =
8πℓ2τ3

Ξ2

(

h − b
∂h

∂b

)

, J =
8πωℓ4τ3

Ξ2

(

h − b
∂h

∂b

)

, (2.75)

together with the magnetization

M =

∫

d2x
√−gMγ−1 = 4πℓ2τ

∂h

∂b
. (2.76)

The temperature T and chemical potential ζ are given by T = τ and ζ = τν respectively,

while the intensive variable conjugate to M is B = τ2b/Ξ. To show this, one can express

dE−τdS−τνdR+MdB−ωdJ in terms of dτ , dν, db, dω and check that it vanishes. Note

that T , ζ and B are distinct from T , µ and B. While the former quantities are asssociated
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to the whole fluid configuration, the latter are local thermodynamic properties of the fluid

that vary on the boundary manifold. For the grandcanonical partition function one finds

lnZgc = − 1

T
(E − TS − ωJ − ζR) =

V T 2h(ζ/T,BΞ/T 2)

Ξ
, (2.77)

which means that lnZgc of the rotating fluid is obtained simply by dividing the grand-

canonical partition function of the static fluid by the universal factor Ξ = 1 − ω2ℓ2, and

replacing B by BΞ. This generalizes the results of [13] to nonvanishing magnetic fields.

We must now compare the fluid charges with the corresponding black hole quantities.

To do this, we first note that for large KNAdS black holes, the temperature has the same

dependence on rh as in the static case (compare (2.54) with (2.17)), so that the function

H = rh/(ℓ2T ) is again determined by (2.20). Using this together with (2.19) and (2.42),

one easily shows that the fluid charges R, S, E, J exactly coincide with the expressions

for the black hole given in (2.53)–(2.57). This coincidence extends also to the energy-

momentum tensor and the R-current: The holographic stress tensor of the KNAdS black

hole was determined in [22], and reads

Ttt =
2m

8πGℓ2
, Ttφ = −2ma sin2 θ

8πGΞℓ2
, (2.78)

Tφφ =
m sin2 θ[ℓ2 + 3a2 sin2 θ − a2]

8πGΞ2ℓ2
, Tθθ =

m

8πG∆θ
, (2.79)

and all other components vanishing. This corresponds to the boundary geometry (2.47),

i. e. , to the rotating Einstein universe. To get the stress tensor for the static Einstein

universe (2.64), recall that the latter is related to the former by a diffeomorphism plus

a Weyl rescaling, dσ2 = e2ϕdσ̃2, with e2ϕ = ∆θ/Ξ. Under a Weyl rescaling, the energy-

momentum tensor transforms as Tµν = e−(d−2)ϕT̃µν (see e. g. [13]), which yields (taking

d = 3)

T̃TT =
mγ3

8πGℓ2
(3γ2 − 1) , T̃TΦ = −3ma sin2 Θ

8πGℓ2
γ5 , (2.80)

T̃ΦΦ =
m sin2 Θ

8πG
γ3(3γ2 − 2) , T̃ΘΘ =

mγ3

8πG
, (2.81)

which is easily shown to exactly coincide with the fluid stress tensor (2.36).

The R-current (2.49) transforms as J̃µ = e−dϕJµ under a Weyl rescaling [13]. This

gives for the R-current corresponding to the static boundary geometry

J̃T = γ3

√
2N3/2qe

6πℓ3
, J̃Φ =

a

ℓ2
J̃T , J̃Θ = 0 . (2.82)

This is again equal to the transport current Jµ
macr. = ruµ of the fluid.

2.3 Black strings in AdS5

We now solve the Navier-Stokes equations on R×S1×S2, R×S1×R
2 or R×S1×H2. This

will yield predictions for black strings in AdS5, for which at present only partial results are
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known [25–31]. Since the function h(ν, b) entering (1.2) is unknown for d = 4, b 6= 0, we

shall consider hydrodynamics rather than MHD, i. e. , we will restrict to the case of zero

electromagnetic fields in this section.

The metric entering the MHD equations is

ds2 = −dt2 + dz2 + ℓ2(dθ2 + S(θ)2dφ2) , (2.83)

where S(θ) was given in (2.4). The only nonzero Christoffel symbols are the ones in (2.22).

For stationary, translationally invariant and axisymmetric configurations one has ∂tT
µν =

∂zT
µν = ∂φT µν = 0, and the Navier-Stokes equations reduce to (2.23)–(2.25) (with Fµν =

0) plus the additional condition

∂θT
θz +

S′

S
T θz = 0 . (2.84)

The entropy and the R-charges read

S =

∫

d3x
√−gJ t

S =

∫

dzdθdφ ℓ2S(θ)sγ , (2.85)

RI =

∫

d3x
√−gJ t

I =

∫

dzdθdφ ℓ2S(θ)rIγ . (2.86)

Now the Killing vectors of interest are ∂t (energy E), ∂φ (angular momentum J on the S2,

R
2 or H2), and ∂z (momentum p along the string). The associated conserved charges are

E =

∫

dzdθdφ ℓ2S(θ)T tt , (2.87)

J =

∫

dzdθdφ ℓ4S3(θ)T tφ , (2.88)

p =

∫

dzdθdφ ℓ2S(θ)T tz . (2.89)

The shear tensor σµν , heat flux qµ and diffusion currents qµ
I must vanish on any stationary

solution of fluid dynamics. The requirement σµν = 0 means that the fluid motion should

be just a rigid rotation. By an SO(3) transformation we can choose this rotation such that

the 4-velocity of the fluid is uµ = (ut, uz, uθ, uφ) = γ(1, ω1, 0, ω2) for some constants ω1, ω2.

From uµuµ = −1 and γ = (1 − v2)−1/2 one obtains then v2 = ω2
1 + ℓ2ω2

2S
2(θ).

The equilibrium fluid flow is symmetric under translations of t, z and φ, so that all

thermodynamic quantities depend only on θ. We now evaluate the expansion, acceleration,

shear tensor, heat flux and diffusion current, with the result

ϑ = 0 , aµ = (0, 0,−S(θ)S′(θ)γ2ω2
2, 0) , σµν = 0 , (2.90)

qµ = −ℓ−2κγ

(

0, 0,
d

dθ

(T
γ

)

, 0

)

, (2.91)

qµ
I = −ℓ−2DIJ

(

0, 0,
d

dθ

(

µJ

T

)

, 0

)

. (2.92)

The requirement that qµ and qµ
I vanish implies that

T = τγ , µI = T νI , (2.93)
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with τ and νI constant. The conditions (2.93) determine all the thermodynamic quantities

as a function of the coordinate θ. We now want to shew that this configuration solves

the Navier-Stokes equations. To this end, we proceed as in [13], and first notice that the

dissipative part of the energy-momentum tensor vanishes once (2.93) is imposed, so that

all nonzero contributions to the stress tensor result from the perfect fluid part, and read

T µν = γ2











ρ + v2P (ρ + P)ω1 0 (ρ + P)ω2

(ρ + P)ω1 ρω2
1 + P(1 − g−2ω2

2S
2(θ)) 0 (ρ + P)ω1ω2

0 0 γ−2g2P 0

(ρ + P)ω2 (ρ + P)ω1ω2 0 ρω2
2 + Pg2S−2(θ)(1 − ω2

1)











.

The only nontrivial equation of motion (2.24) becomes

dP
dθ

− (P + ρ)
d ln γ

dθ
= 0 . (2.94)

Using the Gibbs-Duhem relation (1.19), (2.94) can be cast into the form

γs
d

dθ

(T
γ

)

+ rIγ
d

dθ

(

µI

γ

)

= 0 , (2.95)

which is automatically solved using (2.93). Therefore, the rigidly rotating configurations

are stationary solutions of the equations of fluid dynamics.

From the grandcanonical potential

Φ = −VT 4h(νI) (2.96)

one obtains

ρ = 3P = 3T 4h(νI) , rI = T 3hI(ν
J) , s = T 3(4h − νIhI) , (2.97)

with

hI =
∂h

∂νI
. (2.98)

We saw in the previous section that for large AdS4 black holes, the function h is insensitive

to the curvature parameter k. The same is to be expected for large black strings in AdS5,

so that we can infer the function h(νI) from the k = 0 case, which is simply the AdS5 black

hole with flat horizon. This yields [13]

h(νI) = 2π2N2

∏

J(1 + κJ)3

(2 +
∑

J κJ − ∏

J κJ)4
, (2.99)

where the auxiliary parameters κI are related to the νI by

νI =
2π

∏

J(1 + κJ )

2 +
∑

J κJ − ∏

J κJ

√
κI

1 + κI
. (2.100)

The conserved charges corresponding to our fluid configurations are

E = Lℓ2τ4h(νI) (4K1,6(ω1, ω2) − K1,4(ω1, ω2)) , (2.101)

p = 4Lℓ2τ4ω1h(νI)K1,6(ω1, ω2) , J = 4Lℓ2τ4ω2h(νI)K3,6(ω1, ω2) ,

(2.102)

S = Lℓ2τ3
(

4h − νIhI

)

K1,4(ω1, ω2) , RI = Lℓ2τ3hI(ν
J)K1,4(ω1, ω2) , (2.103)

– 21 –



J
H
E
P
0
3
(
2
0
0
9
)
0
2
5

where L is the length of the S1 parametrized by z, and we have defined the integrals

Km,n(ω1, ω2) =

∫

Sm(θ)γndφdθ . (2.104)

These integrals, which can be performed in terms of elementary functions, satisfy

the relations
∂Km,n

∂ω1
= nω1Km,n+2 ,

∂Km,n

∂ω2
= nℓ2ω2Km+2,n+2 , (2.105)

and

− ℓ2ω2
2Km,n = Km−2,n−2 − (1 − ω2

1)Km−2,n . (2.106)

The chemical potentials corresponding to the rotating/boosted fluid solutions are defined by

T =

(

∂E

∂S

)

J,p,RI

, w =

(

∂E

∂p

)

S,J,RI

, Ω =

(

∂E

∂J

)

S,p,RI

, ζI =

(

∂E

∂RI

)

S,J,p,RK

.

One easily verifies that13

T = τ , w = ω1 , Ω = ω2 , ζI = τµI . (2.107)

Using this, we find for the grandcanonical partition function

lnZgc = − 1

T

(

E − TS − wp − ΩJ − ζIRI

)

= Lℓ2τ3h(νI)K1,4(ω1, ω2) . (2.108)

In the k = 0 case, the integration is trivial and Zgc reads

lnZgc =
V τ3h(νI)

(

1 − ω2
1 − ℓ2ω2

2

)2 , (2.109)

where V is the volume of the three-torus.

For k = 1, we have

lnZgc =
1

2
V τ3h(νI)









1
(

1 − ω2
1

) (

1 − ω2
1 − ℓ2ω2

2

) +

arctan

(

ℓω2√
1−ω2

1−ℓ2ω2
2

)

ℓω2

(

1 − ω2
1 − ℓ2ω2

2

)3/2









, (2.110)

where V = 4πLℓ2 is the volume of the S1 × S2. Note that this reduces, for ω1 = 0, to

lnZgc =
1

2
V τ3h(νI)









1

1 − ℓ2ω2
2

+

arctan

(

ℓω2√
1−ℓ2ω2

2

)

ℓω2

(

1 − ℓ2ω2
2

)3/2









, (2.111)

while for ω2 = 0 it becomes

lnZgc =
1

2
V τ3h(νI)

[

1
(

1 − ω2
1

)2 + 1

]

. (2.112)

13As before, one can express dE − τdS − τνIdRI − ω1dp− ω2dJ in terms of dτ , dνI , dω1, dω2 and check

that it vanishes. In order to show this, one has to use the relations (2.105) and (2.106).
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We see that the formula correctly reproduces the 1/(1 − ω2) behaviour characteristic of

the rotation on spheres and the 1/(1−ω2)2 behaviour of the boost along a circle (compare

also with the results of [13] for Kerr-AdS black holes and with [23]).

Our results of this section yield predictions for rotating black strings in AdS5 with mo-

mentum along the string, that carry three electric charges (more precisely, there are electric

charge densities along the string). While the general solutions of this type are still to be dis-

covered, there are some partial numerical results available, namely for static charged black

strings with all three charges equal [29]. It would be very interesting to compare the ther-

modynamics of these solutions with our hydrodynamical predictions. Unfortunately, the

gravity solutions have been constructed only numerically, so that the comparison involves

a fair amount of numerical work that goes beyond the scope of this paper.

3 Gregory-Laflamme on magnetized plasma tubes

3.1 Description of the problem. Scherk-Schwarz compactification of a CFT

It was observed in [2, 32, 33] that, in the long wavelength regime, d-dimensional fluid

dynamics is also an effective theory describing the Scherk-Schwarz (SS) compactification of

a (d + 1)-dimensional CFT. This theory is dual to SS compactification of AdSd+2 gravity.

At finite temperature the theory has two vacuum solutions, namely i) the black brane

solution that describes the deconfined phase of the dual gauge theory and ii) the AdS

soliton that describes the confined phase [32]. In the neighborhood of the critical phase

transition temperature the two phases can cohabit in equilibrium with a domain wall

interface. Black holes in SS compactified AdSd+2 are then dual to deconfined plasma

configurations immersed in the confined phase. The phase diagram of plasma equilibrium

solutions includes plasma balls, pinched plasma balls, plasma rings and plasma tubes [2, 6,

33]. These plasma solutions are dual to SS compactified AdS black objects whose explicit

solution is not yet known. However, quite interestingly, these phase diagrams reveal to

have properties that are quite similar (although with some differences linked to the AdS

nature of the system) to the known phase diagram solutions of asymptotically flat black

holes. In [6] we have argued that this is not a coincidence since asymptotically flat black

holes may indeed admit a fluid description in the limit of large number of dimensions. It

is therefore important to explore the properties of plasma objects since they might provide

a lighthouse to understand better even asymptotically flat black holes. We will return to

this discussion in the end of this section.

In a previous paper [6], we have shown that plasma tubes suffer from the long wave-

length Rayleigh-Plateau instability that makes them pinch-off when their length is bigger

than their radius. We have further observed that these solutions are the natural duals

of SS AdS black strings and that the plasma instability is dual to the Gregory-Laflamme

instability of a black string. The aforementioned analysis was constructed on the top of

a series of studies [34–39] where the remarkable analogy between fluid tubes and black

strings was observed and analyzed. After [2, 6, 33] promoted this curious analogy to an

actual duality.
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In this section we want to go a step forward and discuss the effect that a magnetic back-

ground introduces in the Rayleigh-Plateau instability of a plasma tube. This will provide

solid predictions for the features of the dual magnetic black strings, associated Gregory-

Laflamme instability and phase diagram of associated magnetically charged solutions.

We will take our boundary geometry to be Rt × R
2 × S1, described by the metric

ds2 = −dt2 + dR2 + R2dφ2 + dz2 , (3.1)

In this background, we consider fluid configurations that are uniform plasma tubes with

topology S1 ×D2, i.e., a disk extended along the periodic z-direction and immersed in the

vacuum or confined phase. We also take them to be translationally invariant along the

SS direction (not represented in (3.1)). Furthermore, we assume that there is a constant

magnetic field along the z direction. The dynamics of this plasma configuration is governed

by the equations of relativistic magnetohydrodynamics (MHD) in (3 + 1)-dimensions. As

mentioned above, in the long wavelength regime, MHD is an effective theory describing

the SS compactification of a (4 + 1)-dimensional CFT. Moreover, in the dual gravity de-

scription these plasma tube configurations correspond to black strings in a background

that asymptotes to a SS compactification of AdS6. The horizon topology of these strings is

S1×S3. The reason being that on the interface between the plasma phase and the vacuum,

the SS circle shrinks to zero size as we enter in the holographic direction and reach the

horizon radius.

3.2 MHD for Scherk-Schwarz plasmas

In this subsection we find the MHD equations that describe the long wavelength magne-

tohydrodynamic limit of a Scherk-Schwarz compactification of a (d + 1)-dimensional CFT.

In the end we specialize to the d = 4 case.

Neglecting subleading dissipation and diffusion contributions (in particular, in equilib-

rium these contributions vanish) the energy-momentum tensor of the fluid in the presence

of an external electromagnetic field is the sum of the perfect fluid, Maxwell interaction and

boundary surface contributions,14

T µν = T µν
perf + T µν

int + T µν
bdry ;

T µν
perf = (ρ + P) uµuν + Pgµν ,

T µν
int = −MµλF ν

λ ,

T µν
bdry = −σhµν |∂f | δ(f) . (3.2)

Here, uµ is the fluid velocity, ρ, P and σ are the density, pressure and surface tension of

the fluid, Fµν is the external Maxwell field and Mµν is the associated polarization tensor.

14The perfect fluid and Maxwell interaction terms were already introduced in (1.7). In section 1, where

we studied the MHD equations of a CFT on M
d, these were the only non-dissipative contributions. Here we

want to study them in the case where we have a SS compactification of a (4 + 1)-dimensional CFT. Then

there is also a surface contribution. It arises because in this case we have an interface between the plasma

and the vacuum phases.
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The fluid boundary is defined by f(xµ) = 0, it has unit normal nµ = ∂µf/|∂f |, and

hµν = gµν − nµnν is the projector onto the boundary.

The MHD equations follow from the covariant divergence of the stress tensor,

∇νT
µν = JνF

µν , (3.3)

where Jν is the charge current defined in (1.7). From these equations we can derive the

relativistic continuity, Navier-Stokes and Young-Laplace equations. In the absence of an

electromagnetic field this derivation was presented in detail in [6]. With the extra Maxwell

contribution the derivation follows similarly and we get (using footnote 2)

uµ∂µρ+(ρ+P)∇µuµ+
1

2
uµMαβ∇µFαβ = 0 , (3.4)

(ρ+P)uν∇νu
µ = −Πµν

(

∇νP− 1

2
Mαβ∇νFαβ

)

+ruνF
µν , (3.5)

Π< − Π> = σK , (3.6)

Π ≡ P −MµαFναnµnν ,

K ≡ h ν
µ ∇νn

µ ,

where K is the boundary’s extrinsic curvature and Π is the generalized fluid pressure. It

is the sum of the usual pressure P and the magnetic pressure (that is due to the Lorentz

force exerted by the electromagnetic field on the polarization current). Π< − Π> is the

generalized pressure jump when we cross the boundary from the exterior (with pressure

Π>) into the interior (with pressure Π<). In the derivation of (3.7), the constraint that

the fluid velocity must be orthogonal to the boundary normal is used (this guarantees that

the fluid is confined inside the boundary),

uµnµ = 0 . (3.7)

Equations (3.4)–(3.7) constitute the set of relativistic MHD equations governing the

fluid dynamics. A particular solution of these equations describes a static uniform plasma

tube in the background (3.1) with radius R0 and extended along the z-direction, and with

a constant magnetic field B(0) in the same direction. This solution is characterized by

uµ
(0) = δµ

t , Bµ
(0) = B(0)δ

µ
z , P = P(0) , ρ = ρ(0) . (3.8)

So, the non-vanishing Maxwell tensor components are FRφ = −FφR = B(0)
√−g and

FµνFµν = 2B2
(0). We use the subscript (0) to emphasize that this is a static unperturbed

solution of MHD. In these conditions some terms in (3.4)–(3.7) simplify considerably. In

particular, Mαβ∇νFαβ = 2M(0)∇νB(0) = 0, ruνF
µν = 0 and Π = P − M(0)B(0) (where

M(0) = χB(0)). P(0) is then a constant by the Navier-Stokes equations (3.5). The pressure

P(0), energy density ρ(0) and magnetic field B(0) are not independent. They are related

through the appropriate equation of state for a SS compactification of a (4+1)-dimensional

CFT. We derive this equation in the next subsection. It is given by (3.16) with d = 4.

This equation of state together with the continuity equation (3.4) demands that ρ(0) is also

a constant.

In subsection 3.4 we will perturb equations (3.4)–(3.7) and study the Rayleigh-Plateau

instability of a relativistic plasma tube in the presence of a magnetic field.
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3.3 Equation of state for a Scherk-Schwarz plasma

In this subsection we discuss the grandcanonical potential and equation of state of a Scherk-

Schwarz compactification of a (d + 1)-dimensional CFT. The d = 4 result will be needed

in the next subsection.

Start with a (d + 1)-dimensional CFT on M
d × S1, where S1 is the SS circle, in

the presence of a conserved R-charge density r (and associated chemical potential µ) and

of a constant magnetic field B. Conformal invariance and extensivity demand that the

grandcanonical potential,

Φ(T ,V, µ,B) = E − T S − µR , (3.9)

is given by

Φ = −VT d+1h(ν, b) , (3.10)

where we defined ν = µ/T and b = B/T 2. So, a CFT on M
d × S1 has the same thermo-

dynamical potential as a CFT on M
d+1 (that we analyzed in section 1.115). The compact

SS direction does however introduce a Casimir or vacuum energy density ρ0.
16 Therefore,

the equation of state of the CFT on M
d × S1 is

ρ = dP − 2BM + ρ0 . (3.11)

It follows from Φ = Φ(T ,V, µ,B) and (3.10) that the pressure of the conformal fluid on

M
d+1 is given by

P = −∂Φ

∂V

∣

∣

∣

∣

T ,µ,B

= T d+1h(ν, b) . (3.12)

Replacing this in the equation of state (3.11) we obtain for the local temperature

T =

(

ρ − ρ0 + 2BM
dh(ν, b)

) 1
d+1

. (3.13)

We can now do a dimensional reduction along the SS direction. This yields a field

theory (that is not conformal) and which has a grandcanonical potential given by

Φred(T ,V, µ,B) = E − T S − µR
= V

(

ρ0 − T d+1h(ν, b)
)

. (3.14)

Upon this reduction, the local temperature of the plasma does not change and is still given

by (3.13). From Φred = Φred(T ,V, µ,B) one has,

s = − 1

V
∂Φred

∂T = T d [(d + 1)h(ν, b) − ν∂νh(ν, b) − 2b∂bh(ν, b)] ,

P = −∂Φred

∂V = T d+1h(ν, b) − ρ0 ,

r = − 1

V
∂Φred

∂µ
= T d∂νh(ν, b) ,

M = − 1

V
∂Φred

∂B = T d−1∂bh(ν, b) . (3.15)

15Note that in section 1.1 we worked in d-dimensions while in this section we work in d + 1 dimensions.
16In what follows, we shall assume that ρ0 is independent of ν and b.
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Replacing (3.13) in the expression (3.15) for the pressure we get the equation of state,

P =
ρ − (d + 1)ρ0 + 2BM

d
, (3.16)

which is valid in or out of equilibrium. A similar replacement could be done for the other

equations in (3.15).

It is important to observe that the hydrodynamical equilibrium of the magnetized

uniform tube also implies its thermodynamic equilibrium [6]. Indeed, the static condition

∂µP = 0 that follows from the Navier-Stokes equation, together with the Gibbs-Duhem

relation (1.19), written as ∇νP = s∇νT + r∇νµ +M∇νB, implies that the local temper-

ature T is constant. Our uniform tube is static and thus the plasma temperature T equals

the local temperature T . Demanding then that (3.13) is constant we find the relation (for

constant c)

ρ − ρ0 = c d h(ν, b) − 2BM , (3.17)

for an equilibrium static solution. The two last relations will be used later in the d = 4 case.

3.4 Rayleigh-Plateau instability in a magnetic background

We now address the stability of a uniform plasma tube with a constant magnetic field along

the tube direction when we perturb it. The dynamics of the perturbations are dictated

by the MHD equations subject to appropriate boundary conditions. Once perturbations

settle in, the static plasma tube is taken away from thermal equilibrium and viscosity and

diffusion effects start being also active. Therefore, the energy-momentum tensor of the fluid

includes now not only the perfect fluid, the Maxwell interaction and the boundary surface

tension terms (3.2), but also a dissipative contribution. The uniform plasma tube is afflicted

by the Rayleigh-Plateau instability [6]. Surface tension is the mechanism responsible for

this instability. Viscosity and diffusion play no role on the activation of the instability.

Therefore, in our analysis we will neglect the dissipation contribution to the fluid stress

tensor, and comment at the end on the effects it introduces. Our main aim is to find the

effect that a magnetic field introduces on the instability, extending the analysis of [6].

Take a static uniform plasma tube with radius R0 in a constant magnetic field B(0)

along the tube z-direction. This unperturbed solution is described by (3.8) and by the

equation of state (3.16), with d = 4.

Consider now perturbations on this plasma tube. A generic perturbation is described as

uµ = uµ
(0) + δuµ , P = P(0) + δP , ρ = ρ(0) + δρ , Bµ = Bµ

(0) , (3.18)

where the perturbation on a quantity Q is generically denoted by δQ. Note that the

magnetic field is kept fixed. As there are no Maxwell equations on the boundary, it is treated

as a non-dynamical parameter. Some of these perturbations are not independent. They

are related by the equation of state (3.16), valid also out of equilibrium. Its perturbation

yields the relation between the density and pressure perturbations,

δρ ≃ 4δP . (3.19)
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In deriving this, we made the assumption that δ(BM) = B2δχ vanishes. This seems

reasonable for small magnetic fields, or in a regime where the susceptibility varies only

slowly as a function of the temperature and the other thermodynamic variables. We shall

comment later on possible effects that a relaxation of this assumption might have.

The perturbed state must satisfy the continuity and Navier-Stokes equations, (3.4)

and (3.5). The Young-Laplace equation (3.7) and the constraint (3.7) provide boundary

conditions for the perturbed problem. After eliminating the 0th order terms using the

unperturbed MHD equations, the continuity and Navier-Stokes eqs. yield, up to first order

in the perturbation,

∂RδuR +
1

R
δuR + ∂φδuφ + ∂tδu

t +
1

ρ(0) + P(0)
∂tδρ = 0 , (3.20)

(

ρ(0) + P(0)

)

∂tδu
µ = −δµ

t∂tδP − gµν∂νδP + rδuRFµR + rδuφFµφ = 0 . (3.21)

Since any perturbation can be written as a Fourier series, in the most general case

we will consider a perturbation that disturbs the boundary surface of the plasma tube

according to

R = R(t, z, φ) , R(t, z, φ) = R0 + ǫ eωteikz+imφ , ǫ ≪ R0 , (3.22)

Positive ω describes an instability with wavenumber k. The possible unstable mode is

axisymmetric if m = 0. Naturally, we look for perturbations of the fluid quantities that

have the same form as the boundary disturbance,

δQ(t, R, z, φ) = δQ(R)eωteikz+imφ , δQ ≡ {δuµ, δP, δρ} , (3.23)

which determines ∂µδQ for µ = t, z, φ.

Solving (3.21) with perturbations (3.23) and (3.19) we find that the velocity pertur-

bations at leading order are

δut(R) = 0

δuR(R) = −
[

ω
(

ρ(0) + P(0)

)

(

1 +
k2

A

k2

)]−1 (

d δP(R)

dR
+

imkA

kR
δP

)

,

δuφ(R) = −
[

ω
(

ρ(0) + P(0)

)

(

1 +
k2

A

k2

)]−1 (

− kA

kR

d δP(R)

dR
+

im

R2
δP(R)

)

,

δuz(R) = −i
k

ω
(

ρ(0) + P(0)

) δP(R) , (3.24)

where we defined the Alfvén wavenumber of the system,

kA ≡
B(0) r

ρ(0) + P(0)

k

ω
. (3.25)

Note that (3.24) satisfies the perturbed version of uµuµ = −1, namely u
(0)
µ δuµ = 0.

Replacing (3.24) in the continuity equation (3.20) and using (3.19) we get

d2δP(R)

dR2
+

1

R

dδP(R)

dR
−

[

η2 +
m2

R2

]

δP(R) = 0 , η2 ≡ k2

(

1 +
4ω2

k2

)(

1 +
k2

A

k2

)

.

(3.26)
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This is a modified Bessel equation. Its solutions are the modified Bessel functions of the

first kind, Im(ηR), and second kind Km(ηR). Km(ηR) diverges as R−m as R → 0 and we

discard it (for m = 0, this solution would give a regular δP but δuµ would still diverge; so

we drop it also in this case). Therefore, the regular solution of (3.26) at the origin is

δP(R) = AIm(ηR) , (3.27)

where A is a constant to be fixed. Replacing the pressure perturbation in (3.24) yields for

the radial component of the velocity,

δuR(R) = − Aη

ω
(

ρ(0) + P(0)

)

(

1 +
k2

A

k2

)

(

I ′m(ηR) +
im

ηR

kA

k
Im(ηR)

)

, (3.28)

where I ′ν(y) ≡ ∂yIν(y).

The solutions just found must satisfy a total of two appropriate boundary conditions.

The first demands normal stress balance on the boundary. This means that the generalized

pressure perturbation must also satisfy the third perturbed hydrodynamic equation, namely

the one that follows from perturbing the Young-Laplace ewquation (3.7),

BC I : δΠ
∣

∣

bdry
≃ σ

[

K
∣

∣

R(t,φ,z)
− K

∣

∣

R0

]

. (3.29)

Here, δΠ
∣

∣

bdry
≃ δP

∣

∣

bdry
up to order ǫ2. The reason being that the external magnetic field

is non-dynamical and thus fixed and the perturbation on the boundary normal is of order

ǫ2.17 On the rhs we evaluate the expression at the perturbed boundary R = R(t, φ, z)

defined in (3.22) and we subtract the unperturbed contribution evaluated at R = R0. The

extrinsic curvature is obtained from its definition, K = h ν
µ ∇νn

µ, with the unit normal of

the boundary (3.22), nµ = |n|−1
(

−R′
tδ

t
µ + δ R

µ − R′
φδ φ

µ − R′
zδ

z
µ

)

. This condition fixes the

ratio A/ǫ to leading order as

A

ǫ
≃ σ

R2
0 Im(ηR0)

(

k2R2
0 + ω2R2

0 − 1 + m2
)

. (3.30)

The second boundary condition is a kinematic condition requiring that the normal com-

ponent of the fluid velocity on the boundary satisfies the perturbed version of (3.7),

uµ
(0) δnµ + δuµn

(0)
µ = 0, where δnµ ≡ nµ

∣

∣

R(t,z,φ)
− n

(0)
µ and the unperturbed normal is

n
(0)
µ ≡ nµ

∣

∣

R0
= δR

µ . This ensures that the velocity perturbation leaves the fluid confined

inside the boundary. This boundary condition then reads

BC II : δuR
∣

∣

bdry
≃ ω ǫ eωteimφ+ikz , (3.31)

17This point deserves a closer look. One has δΠ|bdry = δP|bdry − δ (MµαF ν
αnµnν) |bdry; see (3.7).

Assuming δχ ∼ 0, consistent with the approximation taken in (3.19), the magnetic contribution can be

written as MµαF ν
αδ (nµnν) = MµαF ν

α(n
(0)
µ δnν + δnµn

(0)
ν ), where δnµ = nµ|R(t,φ,z) − n

(0)
µ and n

(0)
µ =

nµ|R0 = δR
µ . We then have δ (MµαF ν

αnµnν) = 2M(0)B(0)δnr. Now, using (3.22) we find that δnr =

[(k2 −ω2)/2 + m2/(2R2
0)]ǫ

2 +O(ǫ3) = O(ǫ2). So the magnetic contribution to δΠ|bdry is indeed of order ǫ2

and thus subleading when compared with the rhs of (3.29), that is of order ǫ.
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Figure 1. Plot of the dimensionless dispersion relation ω(k) for the Rayleigh-Plateau instability

in a static uniform tube for several values of the axial magnetic field B(0) (in the plot, B). The

instability strength and decreases as the magnetic field grows. We use (3.32) and the numerical

data correspond to take σ
(ρ(0)+P(0))R0

= 10−6

5−2B2
(0)

(see text).

where the lhs follows from (3.28) evaluated at the boundary. This boundary condition

together with (3.30) yields the desired dispersion relation ω(k) for the Rayleigh-Plateau

instability in the presence of a constant magnetic field along the plasma tube direction,

ω2 =
σ

(

ρ(0) + P(0)

)

R3
0

[

kR0 Im+1(ηR0)

Im(ηR0)
+ m

(

1 + i
kA

η

)]

×

×
(

1 +
k2

A

k2

)− 1
2
(

1 − m2 − ω2R2
0 − k2R2

0

)

, (3.32)

where we used the relation I ′ν(y) = Iν+1(y) + ν
y Iν(y) and η is defined in (3.26). ρ(0) + P(0)

is obtained from the equation of state (3.16) and (3.17) for d = 4.

We conclude that the Rayleigh-Plateau instability is active (ω > 0) for wavenumbers

k satisfying the condition

k 6

√
1 − m2

R0
. (3.33)

Since m is an integer this means that only axisymmetric modes (m = 0) are unstable. In a

previous paper [6] we have shown that the condition (3.33) for the threshold wavenumber

can be found by noting that unstable modes are those that reduce the potential energy of

the system for fixed volume (equivalently, they are those that maximize the entropy for

fixed conserved charges). In the present system we have a competition between the surface

tension and magnetic potential energies. However, to leading order O(ǫ) in the perturba-

tion, the magnetic energy does not change. Indeed, the magnetic field is kept fixed without

being dynamically perturbed, see (3.18), and the volume change that also contributes to

the magnetic energy variation is subleading, i.e., O(ǫ2) (see footnote 17), when compared

with the O(ǫ) change in the surface tension energy. Therefore, only the surface tension

potential energy can decrease (to leading order in the perturbation), and thus the condi-

tion (3.33) for the instability is independent of the introduction of a background magnetic
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field.18 With or without a non-dynamical magnetic field, the Rayleigh-Plateau instability

is a long wavelength instability that afflicts the plasma tube when its length is bigger than

its transverse radius.

The presence of the non-dynamical magnetic field does however reduce the strength

of the instability. Indeed, in the plot of the dispersion relation (3.32), see figure 1, we find

that an increment in the magnetic field B(0) weakens the instability. For high values of B(0)

the instability strength becomes considerably weaker. Strictly speaking we cannot however

say that it disappears for a critical value of B(0) since the threshold mode (3.33) is always

non-vanishing independently of B(0).

A word of caution is in order. From the equation of state (3.16) and the equilibrium

condition (3.17) one gets for d = 4: ρ(0) + P(0) = 5ah(ν, b) − 2B(0)M(0) (for constant a).

Note that unfortunately we do not know the function h(ν, b) in five dimensions and this

prevents an accurate computation. Depending on its form, the condition ρ(0) + P(0) > 0

might require a maximum allowed B(0). To plot figure 1 we took 5ah(ν, b) ≡ 1, i.e.,

ρ(0) + P(0) = 5 − 2B(0)M(0), and this indeed implies a critical B(0). However, we should

have in mind that h is not a constant but h = h(ν, b). There might thus not exist a

maximum B(0).

3.5 Unstable plasma tubes and their gravitational duals

The magnetized plasma tubes we have been discussing are dual to magnetic black strings

in SS compactified AdS6. The Rayleigh-Plateau (RP) instablity of the plasma tube is dual

to the Gregory-Laflamme (GL) instability of the black strings. Unfortunately the magnetic

black string solutions in SS compactified AdS6 have not been constructed yet, and thus

we cannot compare our plasma results with their gravitational duals. Therefore, our study

provides solid predictions for the features and stability of SS AdS6 magnetic black strings.

There is however growing evidence that justifies the comparison of our plasma results

with the properties of magnetically charged black strings in an asymptotically flat back-

ground. Let us pause here to review the evidence that seems to permit this extrapolation.

In [2, 33] the phase diagram of axisymmetric rigidly rotating plasma configurations was

found. The set of solutions is given by plasma balls, pinched balls and plasma rings. Quite

remarkably, the entropy vs angular momentum (for fixed energy) phase diagram displays

remarkable similarities with the phase diagram of asymptotically flat [40, 41] and AdS [42]

black hole solutions.

More closely connected with our present study, [6] analyzed the RP instability of a

neutral plasma tube and the associated phase diagram of non-uniform plasma tubes and

localized plasma balls. The plasma instability has properties remarkably similar to the

GL instability of a neutral, asymptotically flat black string [7] (see [43, 44] for reviews).

A brief account of these similarities includes [6]: (i) the dispersion relation of the two

instabilities are quite similar and, not less important, both evolve similarly as we add

extra dimensions (compare figure 5 of [6] with figure 3 of [45]); ii) for static configurations,

18Later, in the end of next subsection, we will argue that we do no expect this to be true when the

approximation δχ ∼ 0 is relaxed.
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only axisymmetric modes are unstable and there is even a quantitative match for the

threshold wavenumber as the number of dimensions gets large; for rotating solutions, non-

axisymmetric modes can become unstable in both instabilities; iii) there are similar critical

dimensions for the entropically favored solutions; iv) the phase diagram containing the

solutions living in a compact dimension, namely (non-)uniform extended configurations

and localized configurations is astonishingly similar (compare the S(J) diagram of figure

1 of [6] with figure 3 of [46]); the known initial time evolution of the GL instability of an

asymptotically flat black string is similar to the dynamical evolution of the RP instability

(compare figure 4 of [47] with figure 1 of [48]). General arguments suggest that in the

limit of large number of dimensions the fluid description of asymptotically flat black holes

should become more and more accurate.

The just mentioned facts motivate us to compare our results for the RP instability

of a magnetized plasma tube with the know studies [45, 49, 50] of the GL instability of

magnetically charged asymptotically flat black strings/branes. In [49, 50] it is found that a

magnetic charge weakens the strength of the GL instability. In view of the above evidence,

this is in agreement with our plasma result: a magnetic field also decreases the strength of

the RP instability of the plasma tube.

Besides showing that the GL instability gets weaker as magnetic charge is added to

the system, [45, 49, 50] have also been able to show that it actually disappears in the

extremal case, when the charge has its maximum allowed value (for some systems it is

absent even before the extreme state is reached [50]). This property leads to an interesting

new relation. Indeed, a dynamical instability like GL is expected to be accompanied

by a local thermodynamic instability. This motivated Gubser and Mitra [51] to propose

the conjecture that a black brane/string with a non-compact translational symmetry is

classically stable if and only if it is locally thermodynamically stable. A detailed analysis

of this conjecture was further done in [52]. In these studies it was indeed found that there

is a change in the sign of the specific heat of the black brane precisely for the critical charge

where the GL instability disappears. It is thus interesting to discuss a natural version of the

Gubser-Mitra conjecture in the uniform plasma tube setup. Unfortunately, we are not able

to address this interesting issue. The reason is two-folded. First, to compute the specific

heat of the uniform plasma tube we would need to have the relation between the entropy

and the energy of the system. To get the entropy we would need to integrate the entropy

density given by the first relation in (3.15). This requires knowing the precise form of the

thermodynamic function h(ν, b), defined in (3.9), in five dimensions. Unfortunately, this is

currently unknown. Second, although the RP instability gets weaker as the magnetic field

increases we do not find a finite critical value above which it is not active (see however the

discussion at the end of subsection 3.4). We do find that the instability strength reduces

substantially as B grows not too large. Although in practice we can say that it disappears

for large magnetic field, strictly speaking we are not allowed to say that it is gone since the

threshold wavenumber keeps finite (see figure 1). The RP modes become sort of marginally

stable in the sense that unstable modes are present but with very small strength. So, at

most we would be able (if we knew h(ν, b)) to check that the specific heat also never becomes

positive for the uniform plasma tube as the magnetic field grows. In the uncharged case,
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h(ν, b) is a constant, and we found in [6] that the heat capacity is indeed always negative.

Adding a small magnetic field should not change this, but we cannot explore the situation

for larger fields.

The absence of a critical magnetic field in the RP instability deserves however a much

more careful look. As described above this occurs because the threshold wavenumber,

where the RP is marginally stable, persists invariant under changes of the magnetic field.

This is an odd feature19 and it is not hard to convince ourselves that this is a consequence

of neglecting the susceptibility perturbations (see discussion associated with (3.19) and

footnote 17). Indeed, from footnote 17 we see that when δχ 6= 0 there is a contribution

proportional to the square of the magnetic field strength in the lhs of (3.29). This con-

tribution persists in the following equations and the threshold wavenumber (3.33) gets

then reduced when the magnetic field increases. Unfortunately, when we consider δχ 6= 0,

the perturbed system is left undetermined even after using the Bianchi identities and the

conservation of the polarization current (in footnote 2). We would need to know some

microscopic information to express δχ in terms of perturbations of other thermodynamic

quantities — a relation that we do not have. For this reason, and because δχ is nevertheless

expected to be small (as justified previously), we took δχ ∼ 0 in our analysis. This ap-

proximation nevertheless allowed to find that a magnetic field decreases the RP instability

strength, and we have a good control on the effects that a non-vanishing susceptibility per-

turbation introduces in the system: the instability strength still decreases when B grows

and, on the top of this, the critical wavenumber also decreases.

Usually an unstable mode signals a bifurcation to a new branch of configurations in

the phase diagram of solutions. Without magnetic fields this is indeed the case and the

RP unstable mode of the uniform plasma tube leads to a branch of non-uniform plasma

tubes that joins a third branch of plasma balls localized on the compact tube direction [6,

54]. Although not studied here, again because we do not know the function h(ν, b), we

naturally expect that similar new branches of solutions, representing magnetic non-uniform

tubes and magnetic localized plasma balls, exist also in the phase diagram of magnetized

plasma configurations.

To end this section, we address the effects that viscosity introduces in the Rayleigh-

Plateau instability. These were already discussed in more detail in [6], so we will be brief in

our comments. Generically, at least classicaly, the viscosity increases the wavelength of the

most unstable mode, and weakens the strength of the instability [53]. It has a subleading

effect on the activation of the instability (however, the instability can get considerably

weaker if the viscosity is very high), but plays an important role at later stages in the

time evolution of the instability, namely in the pinch-off phase of the plasma tube [48].

Typically, the lower the viscosity is, the higher is the number of plasma balls formed.

Your fluid is non-conformal so we have bulk and shear viscosity and thermal dissipation.

Dissipation increases considerably the technical challenge of solving (even numerically) the

19Indeed, if we consider the standard RP instability on a charged fluid tube coupled to a dynamical

magnetic field, we find that both the instability strength and the critical wavenumber decrease when the

magnetic field increases [53].
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MHD perturbed equations: we get a coupled system of differential equations with a fourth

order derivative term.

3.6 Regime of validity

To conclude this section, the regime of validity of our results should be kept in mind.

First of all, the fluid description of the deconfined plasma must be accurate, and

hence the thermodynamic quantities must vary slowly over the mean free path ℓmfp of the

constituent particles, which is of the order of the mass gap of the theory, or equivalently

of the order of the deconfinement temperature Tc ∼ ρ0

σ . That is, all length scales λ in the

fluid must be

λ ≫ T−1
c ∼ σ

ρ0
. (3.34)

This condition imposes restrictions on the validity of the Rayleigh-Plateau instability anal-

ysis: the RP unstable frequencies and wavenumbers must satisfy

{ωR0, kR0} ≫ σ

ρ0R0
. (3.35)

Since the most unstable mode dominates the instability we must guarantee that this con-

dition is verified in the vicinity of the maximum of the dispersion relation. We find that

for σ
ρ0R0

. 10−4 this relation is satisfied, and things get better as σ
ρ0R0

becomes smaller.

In particular this is true in the dispersion relation plot of figure 1.

Second, the interface between the confined and deconfined phases, i.e., the fluid surface,

has a finite thickness of the order 1/Tc [32], and therefore the delta-like surface approxi-

mation we used is valid provided that the curvature of the surface is small with respect to

the scale 1/Tc. So, for plasma tubes the analysis is good when the boundary radius Ro is

everywhere large when compared with T−1
c ,

σ

ρ0R0
≪ 1 , (3.36)

which is perfectly compatible with (3.35).

Finally, we neglected the dependence of the surface tension on the temperature and

other thermodynamic quantities of the fluid. For consistency we must then demand that

on the boundary between the confined and deconfined phases the temperature of the

plasma must remain everywhere close to the critical temperature Tc, i.e., T /Tc ∼ 1 at

the tube boundary.

As discussed already in great detail in subsection 3.5, we also neglected the dependence

of the magnetic susceptibility on the temperature and on other thermodynamic quantities.

In the previous section we already identified the effects of taking this assumption and of

relaxing it.

Once these conditions are fulfilled, the plasma approximation holds and can be trusted

to study the properties of black holes. The moral of this analysis is that there is a broad

window of parameters for which the analysis of the Rayleigh-Plateau instability is well

within the required validity regime.
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